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Abstrac t - -Tw, , -d in leHsi~mat  laminar  buundary-layer eq~Jali~ns ~f mcnlie[ltulll, heal aud l/lass Irausfer 

have b`'.en llu!nericall'~ s~,lve`'l under f )reed c(,nveciit,n. A finite differeI~ce apl)l~,• ut the gu~.ernin~ 

e(iuatl,,lls ill a (3(,eriler-type variable ,;h>lllaill has beeii inqJlc~neuted ~.,[~ o~mpuler. To pruvide rigun~us in- 

il}a[ t~ uditi~,ns w x 11 in Ih`'! I),,uudaty-layer co,de differential eqclati~ns guverning heat and mass transter 

in the slaguali~,l~ regic,n have I:,ucn s,.~l up aim s~,lved mm~erically. 

Tla: effcr ~,f ,,uler fl~'~,.' c,~mliti,,n ,,u skin fricli,~H as ,.,.'ell as hea{ and n/ass transfer has been 

dem~,uy, lraled Rcscllts ~,[)Iainect made au llnpnwemc~nl ,;x.e~ i)asl lhet,re[ical predictions based un analylical 
ap/m,xi:l~ali,,n, and agreed fav,>rablv wilh experinlenlal da',a available 

INTRODUCTION 

M,~n~eutum, heat and mass Iransfer ar(~und a cir- 
ctdar cylinder ill crussfh,w has lung been a t)upt]la~ 
t,,~lAc fl,~r huth theoretical al~d experinien!al im,esti 
gator:;. This, perhaps, is due to lhe industl ial signifi- 
cance: mf this relatively s l o p e  gec~metr?,'-fl~,v, systen" 
oftentimes encountered like in heat exchang,~r, i)ackink 
tower, catalytic reactor design.', etc.. The advauce uf this 
area of study has wen been balanced between theoret- 
ical a,~d experimental [)arts of studies, and a number of 
vahJable review papers became available il~ the [last. 
These include a lair coinparative stud) of exl~erinlenlai 
inves:igations up to 1948 by Winding and Cileney t] ] 
an exhaustive review over fifteen prediction methods 
up to 1962 by Spalding and Pun [21, and a comprehen- 
sive review over two hundrecl experimental and tlle<)- 
retica[ works up to 1972 by Zukauskas [31. 

The present study is confined to a theoretical predic- 
tion cf heat and mass transfer from a circular cylinder 
in laminar cross[low under forced convection. Earlier 
theoretical predictions wi[l only be briefly nientioned 
t/ere as they relate to tile present investigations. The 
task in this area was to solwe the laminar boundary- 
layer equations of continuity, motion, thermal energy, 
and the continuity of diffusant. Solution methods to the 
two-dimensional (2-D) boundary-layer equations so fat- 
reporled were limited to the analytical approximation 
except the one by FrOssling [4] who solved the 
bounda~-iayer equation.~ by a series method which in 
nature is exact. However, the accuracy of this method 

was also limited practically by the number of terms 
available in series expansion. The solution thereupon 
ubtained is regarded an exact only near the front 
stagnation point. Other useful methods of solution are 
essentially based on similarity solutions which are ex- 
act as far as the boundary layers are sil:ular. The boun- 
dary layer around the circular cylin,~{,'r in crossflow is 
unly locally sinii]ar and therefore the similarity solution 
involves certain [c, vel of inaccuracy m geueraL The ma- 
jority of the predictiuu methods are contained in Re[. 
(2). and the readers are referred to this paper for further 
details. Several methods of pJediction were also 
reporled later, however, these are essentially analytical 
aI:)proximations based on similarhy solution [5 and 61. 
Exact numerical solutions to tile boundary-layer 
equations were provided by Kralt and Eckert [7] using 
the method of finite difference. Constant wail 
temperature and constant heat flux boundaD' condi- 
finns were both considered in this paper. The validity of 
this exact solution was however confined to the low 
Reynolds number flows certainly excluding the separa- 
tion characteristics. 

in the presenl investigation a fhlfle difference 
method has been ernp]oyed to provide exact numerical 
solutions to the 2-D lanlinar boundary-layer equations 
under forced convection. Th.e method of finite dif- 
ference, of course, todav is a fairly siml)le exercise. 
However, to the knowledge of presenl aulhor no one 
has atlempted to solve the problem hy this method in 
practical Reynolds number range, and it should be 
more reliable than any other asynlptotic methods. 
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M A T H E M A T I C A L  M O D E L I N G  

The governing equations of momentum, heat and 
mass transfer of 2-D laminar boundary-layer flows are 
formulated in this section. A forced convection with no. 
viscous dissipation has been assumed. The mass 
transfer problem is limited to convective transport of a 
nonreacting binary system of dilute solution, which still 
has alnple applications [8]. 
G o v e r n i n g  e q u a t i o n s  

The dimensional form of the governing equations in 
tertns r convent ional notation for the f low of an incom- 
pressible cont inuum in two dimensions (see the coor- 
dinate system in Fig. l) reads 

0 ~1 
Ox 0y 

0 u . O tj _ I: O U = ,::3 ~u .o 
Ui~x ~ vo>, -'ax i~a,+, +- 

OT 5I" 0~'1" O~'l" (3 
UOx + v ~ ,  :a  r 2 ~ Ov ~ 

OC 0C O~C a~C 
u - -  + v " :D!  -2 ~ (4 

Ox Oy Ox ' O y  2 

The initial and boundary conditions considered are: 

ucx, t } ) :  v :x ,  0)=  0 15! 

Tix,  0 )  T,. t6) 

C~x, {!) C~ ',7) 

u{x, oo) <U(x) (8) 

T (x, oo) --T~ (9) 

C(x, co) C. !I0) 

In the above, U is the outer flow velocity distribu.- 
tiou, that is the inner limit of the outer expansion, ancl 
v, a and D are the kinematic viscosity, thermal diffusivi- 
ty and binary diffusivity, respectively. Equalion (5) diG- 

Fig .  1. 

y,  7] 

B o u n d a r y -  l a y e r  c o o r d i n a t e .  

tares n~, slip, no penetration at the ,.*,'all, eqs. (6) and (7) 
su[)efp,~se (Ol]stalLt wall teniperature and constant wall 
o,uct, ntratiun conditions, and the conditions at the 
br edges are defined by eqs. (8)-(10). To 
sweep the 2-D bounda D' layer, condit ions at x = 0 plane 
should be imposed. This wi l l  be discussed at the end of 
this section. 
N o n d i m e n s i o n a l i z a t i o n  a n d  b o u n d a r y . l a y e r  ap-  
p r o x i m a t i o n  

The dimensionless variables are defined by 

x * = x / L , y * =  ',y/L) Re, u*= u/ITo, 

v*:= w,/[!.) \ ,Re ,II', 

T *  ' " -'1". b 

C* .... C,,,- C)/ '  ':C ~,- C ~  (12) 

In eq. (11), U. is the free-slrealn velocity, and Re is the 
RQvnolds number based on tile free-stream velocity 
and the characteristic length, L. Then the governing 
equat ions in dinlensiculless, stretched coordinate 
becon le 

O u *  av*  
+ 0 113) 

Ox* Oy* 

�9 * , *  2 t *  
Ou* v ' O [  , . , 0 [ '  0 1' 

. O T *  i , . O T *  1 ,'3~T * ~15) 
u Ox* ' O y * :  Pr  ,07, .2  

,OC*  , , O C *  1 O'C* 
u Ox* " ' 0; '* = Sc 0', *~ (161 

where Pr:C~,a/k is tile Prandtl number, and So~,/D is 
tile Schmidt number. Oil going from eqs. (1)-(4) to eqs. 

(13)-(16), terms dMded by the Reynolds number have 
been dropped out resulting in a boundary-layer approx- 
imation. The corresponding boundaB,' conditions 
become: 

u* ix*, 0 ) =v*  (x*, 0 ) =  0 117) 

T*(x*, 0 ) = C * ( x * ,  t ) ) = 0  (18) 

u* (x*, Go ) = U* ,: 19) 

T* Ix*, o0) ='C* (x*, oo) = 1 (20) 

A G 6 e r t l e r - t y p e  t r a n s f o r m a t i o n  a n d  f i n i t e  dif- 
f e r e n c e  a p p r o x i m a t i o n  

Traditionally the numerical calculation of laminar 
boundary-layer equations has been performed in a 
similarity variable domain. In such a domain, the 
numerical grid approximately follows the growth of the 
boundary layer. The boundary layer over a 2-D bluff 
body is only locally similar. Therefore a certain 
modified form of similarity variable should be 
employed for this geometry. The one introduced here 
has been proved 'reD' useful in boundary-layer calcula- 
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tions [9,10/. 

foX. ,f = U* &x* (21) 

rl U * y * / ~ r ~  i22) 

A s:raightforward aDPlication of chain rule leads the 
followi ng torm of the governing equations: 

2~ F ~ = F - V .  - 0 (23) 

F,,-~ a , F ~ + a ~ F + a 3 - a , F . : -  0 (24) 

T * , + b , T * + b 2 T * + b 3 + b , T *  -- 0 (25) 

C , ~ c ~ C ~ + c 2 C  + c 3 + c , C * = O  (26) 

where F is the normalized viscous velocity defined by 

F ~- u*/U* (27) 

and V = 2 ~  Orl F Ox* U* +- - - - v *  (28 

The variable coefficients in eq. (24) are: 

a t  = - -  V 

a= = - fiF', 5 
2~ OU* 

U* O f  

(29~ 

(30) 

(31) 

(32) 
a 3 = 5  

a, = -2_~F 

Those in eq. (25) are: 

b, a, Pr  (33) 

b ~ - b 3 = 0  (34] 

b, =. a, P r (35 ] 

Replacing Pr by Sc, these correspond to those in eq. 
(26). Equations (23) - (26) have been numerically in- 
tegrated using a finite difference technique with a 
variable grid spacing. 

An equal spacing was provided in streamwise direc- 
tion, however the grid point spacing in normal direc- 
tion was a geometric progression, i.e., the ratio of any 
two ~uccessive steps was a constant. Integration was 
first proceeded in the stagnation region along the nor- 
real direction, and then moved in downstream direc- 
tion until the skin friction is vanished. This condition 
is a widely accept?d criterion for steady separation. 
Initial condit ions to x=O plane and the outer 
flow equations 

A~ mentioned earlier, the boundary-layer calcula- 
tions proceed by first providing the initial conditions to 
the front stagnation region and the outer flow equation. 
The bounda~-layer flow is driven by the outer poten- 
tial flow. The impinging flow on the narrow stagnation 
region of a circular cylinde.r is essentially a plane 
stagp, ation flow, and the well-known ttiemenz profiles 
[11] have been provided. These are: 

r,;" +GG" - C , ' 2 -  t = 0  (36) 

(3(0; : G' (0): 0. (; '  (c,.:)=. 1 ,:37',, 

where 

f(y]~(va)~ 2(;(,~,), ~= (v/'a)' 2} ', u=xf ' ,  

f (38) 

For further details, the reader is referred to Ref. (1 l). 
Under the forced convection assumption, the 

temperature and concentration distributions near the 
stagnatior, point are readily- obtained by substituting 
the velocity distribution into the governing equations 
i.e., into the thermal energy equation [eq. (3)] and the 
equation of continuity of diffusant [eq. (4) I. The results 
obtained upon substitution become 

"l'yy ~ f T v P r =  0 

T(0) "I%, T(or "I'~ 

Cy:,. t fCySc- :  0 

C(O) C,,,, C{oo)-  C~ 

~39 ) 

(40 

t41) 

c421 

Equations (39) and (41) were first rewritten in stagna- 
tion coordinate defined in this section, and subsquently 
were solved wifll eq. (36). A package program (COL- 
SYS) based on a collocation melhod was employed to 
solve these three boundaLy value problems numerical- 
ly. The numerical solutions thereby' obtained provided 
the imtial conditions to x= 0 plane in boundary-layer 
calculations. 

A most important input to the boundary-layer 
calculation is the outer flow velocity distribution. The 
outer flow equation for a 2-D symmetric body with a 
stagnation point should be in the form of 

[!*~ A,x*~ A3x *~§ *~ 431 

where x* = 0 is the mean stagnation point. In this 
equation the leading linear term is to ensure a stagna- 
tion flow', and terms of odd order are to guarantee the 
symmetry of the flow. Several outer flow equations in- 
chJding potential flow and experimentally determined 
outer flows are considered in the present calculations. 
Experimentally determined outer flow equation implies 
certain very important flow characteristics such as 
blockage effect, turbulence level and Reynolds number. 

RESULTS AND DISCUSSION 

Presently calculated numerical solution to eq. (36) 
is shown in Table 1. Shown in the  same table is the 
numerical solutionto the same equation by H6warth 
[111 who made an improvement over Hiemenz original 
solution. The two results are identically tile same. 
Temperature distribution around the stagnation point, 
i.e., the numerical solution to eq. (39) is displayed in 

Korean J. Ch.E. 4Vol.4, No . l )  
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T a b l e  1. T h e  s t e a d y  p l a n e  s t a g n a t i o n  f l ow  
s o l u t i o n � 9  

\ 

p r e s e n t  t ]~:)-  p r , ' . ~ , : u T  1 1 , ; -  pre-,t"nt H 6 -  

warth ] w :1r ib  >.arth l 
I 

0.0 0.0 

0,20000 0.02%2 

0.400{}0 0.08806 

0. 60000 0. 18670 

b. 800:)(s 0.31212 
, - ,} 1. 00000 {. 4:x)~3 

, g q  , 1.20000 O.&~.(H 

11}s 6.796}5 

]. 60000 [ 0.97!}78 
I 

1.80000[ 1. 16886 
i 

2. 000{}0 1 1.3,5197 

2.20000 i 1.55776 

2.40000 1.75525 

2.60000 1.95381 

2.~){)00 2.15300 

3.00000 2.35256 

3 2{1{00 2. 55233 
3. Ih{bO{, 2.75221 
3.tiOt (~[ 2.95215 

3.8{}000 3. 15212 

I. 00000 3. 35211 

1.20000 3. 55210 

1.10{ 0{~ 3.77,210 

1.6{}{}00 3.95210 

0.0 [(. q; 

0.0233 [ } 2'26q 

0.0881 (}.11416 

0.18(;7 0. 56628 
= 

0.3121 (}. (~8594 

0.4529 0.77787 

0.6220 0.8,16{;7 

0.7967 0,89681 

0.9798 0.93235 

l. 1689 (}.95683 

1.3620 0.{}7:{22 

1.5578 0.98385 

1.7553 0.99055 

1.9538 0.994{}3 

2.1530 0.99705 

2.3526 0.99842 

2.5523 0.99919 

2.7,122 0.!}9959 

2.!}5'21 0.99980 

3.1521 0.99991 
, ( ( ( {  3.3521 0. ,}9,U6 

( ( {  3,5521 0.9,}9,}8 

3.7521 0.99999 
�9 ( ~ , )  3. ,L~I 1.00000 

0.0 

0.22f~0 

0,41{5 

0.5}}~3 

0. is859 

0.7779 

0.8167 

0.89~8 

0.93Zt 

0.9568 

0.9732 

0.9839 

0.9905 

0.9946 

0.9970 

0.9984 

0.9992 

O. 999ti 

O. 9998 

0.9999 

1.0{}00 

l. (}(}(}0 

1.0000 

1.00(}0 

1.2 259 1,2325 

1.03445 1.0345 

0.8,1633 0.846f 

{}. 6"7517 0.6752 

0.52513 0.52,51 

0.39801 0.3980 

0.29378 0.293.'~ 

0.21100 0.2110 

0.117:{5 0. 1471 

0.0!i996 0. 1000 

0.00583 0.065"~ 

0.01204 0.042() 

0,02602 0.026,] 

O. 01560 0.0156 

0.00905 0.0090 

0.00508 0.0051 

0.00275 0.00% 

0.00144 0.0011 

0.00073 0.0007 

0.00036 0.0001 

0.00017 0.000d 

0.00008 0.0001 

{}.0o003 0.000,) 

0.0000l 0.00{}0 

Fig. 2. This together with the velocity profile shows an 
asyruptotic behavior which is a most important bound- 
aD,-]ayer characteristic. Though not presented here, 
numerical solution to eq. (41), i.e., concentration 
distribution near the point of stagnation, aso showed 
an asymptotic tendency. These three stagnation profiles 
were then recasted in boundau-layer coordinate, and 
fed t{~ the boundary-layer code to initialize the 
boundaw-layer calculations. 

With the stagnation region solutions, the boundaD'- 
layer calculations proceed by providing the outer flow 
conditions in terms of outer flow velocity, distribution. 
Outer flow velocity &':tributions tested in the present 
study are plotted in Fig 3. In the figure, potential flow 
corresponds to AI=2.u, A~=0.333 A5=0.016, and 
those for Hiemenz profile are An=I.814, Az -0.271, 
A, :~).047, and the Sogin profile corresponds to 
A t 1.82, A~ 0.400, A 5 - 0.000. The latter two profiles 

1.0( 

0.83  

0 . 6 7  

~, 0.50 
E-- 

0.33 

0. 17 

O. O0 

, , , / 

/ /  

0 . 0 0  0 .75  1 .50 2 .25  3 .00  

F ig .  9. S t a g n a t i o n  region t e m p e r a t u r e  d i s t r i b u -  

tion{ T * '  dT*/d.~9.  

1.93 t ~ ! / 
/ / / 

/ 

/ f--I 

1.2~ / ' : ~ - ~  

0.9~ / ,  

// 
O. 64 

/ /  O Potential flow eq. 
g Y  + Hiemenz eq. 

0. (~2 .,:'r 2.< Sogin eq. 

/ 
0.00 

0 .00 17.81 35.63 53. ,14 
The ta  

Fig .  3. O u t e r  f low veloci ty  d i s t r i b u t i o n s .  
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are polynomial curve fit to the experimental data in 
Ref..12). and Ref. [12), respectively. The skin friction 
distributions corresponding to the outer flows in Fig. 3 
are given in Fig. 4. In both figures, the deviation among 
the three types of outer flow is notable as the point of 
separation is neared. Polential  flow obviously 
desigcmtes no separation in contrast to a laminar 
separation al about 82 ~ from the front stagnation point 
for a wide range of R%;nolds number i.e., in the sub- 
critical region. Actual separation point is however ve~" 
sensi~Jve to the external flow conditions such as free- 
stream turbulence level and blockage. With about one 
percent free-stream turbulence, for example, the point 
of separation is delayed by 5-'7~ 

P;'esently predicted rate of heat transfer correspon- 
ding to the outer flows mentioned is shown in Fig. 5. A 
notable difference in heat transfer between potential 
flow and experimental outer flows is demonstrated. 
Present method of prediction of heat transfer is now 
conq->ared with many other predictions in Fig. 6. The 
details of other prediction methods are found in Ref. 
(2). The outer flow equation is common for all of the 
methods including the present one, i.e., the Hiemenz 
oute~ flow which is a curve fit of experimental data by 
Schmidt and Wenner [2]. Spalding and Pun [2] rated 
over fifteen prediction methods by comparing each of 
therr with Frbssling's exact solution up to 45 ~ from the 

% 

r 

C-,,I [ ~: 

Lr7 

(-.... 
o 

o o 

Fig. 4. 

/ N oglrl eq. 

I ! , 

53.44 0.00 17.81 35. 63 
Theta 

S k i n  fr ict ion d i s t r i b u t i o n s .  

71.26 

~ og, n eq. - 

<:~ I I 1 

F i g ,  '~. 

0. 00 17.81 35.63 53. 44 71.26 
Theta 

L o c a l  ra t e  of  h e a t  t r a n s f e r (  P r =  0. 7) .  

1.2 

1.1 

1.0 

0.9 

[~  0.8 
"s 
z 0.7 

0.6 

0.5 

0.4 

0.3 

Fig. 6. 

Schmi& ~ Wenner 1 
" . . . . . . . . . . .  --~ / r  Experimental "~ q 

170, 000 ; / 

- . .  3 

-- Spalding / / /  " k'~t\ 

Sqoro - /  
- -  , / '  : ? ~ t  x~N \ 

-- ,Present work / 

I , t , !  ~ --I ' ' 
10 20 30 40 50 60 70 

Theta 

L o c a l  ra te  of  h e a t  t r a n s f e r  p r e d i c t e d  by 

m a n y  d i f f e r e n t  m e t h o d s ( P r  = 0 . 7 ) .  

Names represent methods in Ref. [2]. 
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stagnation point and the experimental data by Schmidt 
and Wenner beyond this point. Tile present results are 
ve O' close to the one by Spalding and Pun, however, 
underestimate compared to the experimental data. The 
same tendency is seen for other predictions which are 
ranked high by Spalding and Pun. At least three possi- 
ble reasons may be considered for this common dis- 
cripancy between the theoretical prediction and ex- 
perimental data: the constant property assumption, the 
free-stream turbulence effect and the unsteadiness ef- 
fect due to Ihe natural shedding. The constant property 
assumption is a premise of forced convection and will 
certainly be in part responsible for undere-;timation. 
The effect of natural shedding on local rate of heat 
transfer is being examined in detail and will be 
reported later. The effect of free-stream turbulence level 
on heat transfer has in the past been carefully studied 
by many investigators and well documented in Ref. 
(15). It is nowadays well understood that the free- 
stream turbulence enhances the heat transfer, for ex- 
ample, local rate of heat transfer is approximately 
doubled by one percent increase in turbulence level at 
low turbulence level. 

Finally the local rate of mass transfer is shown in 
Fig. 7. The case interested here is the sublimation of 
solid naphthalene into air []2]. The experimental con- 
ditions were such that a forced convection was valid 
i.e., the experiment was done at Re = 122,000 with the 
naphthalene concentration less than 0.1% of air in air 
stream. ]t is not difficult to show that the characteristic 
mass transfer group m this case is the, Shl f ~  
(Sh - mass transfer coeff • cylinder diameter;D = Sher- 
wood number), and this is obtained by 

Iv* c9C* 
Sh/%"-~e = 1. ,1142 - - ~  - - ) ':44) 

V2~ O~ ..... 

1. 4 

1.2 

[.~ 1.0 

~ 0 . 8  

0.6 

0.4 

Fig.  7. 

]f'O i ~ i , 
30 50 70 

Theta  (deg.) 
Local rate of mass  transfer .  
Sublimation ot naphthalene into air, Sc=::2.5 

The predicted mass transfer overestimates up to 
about 50 ~ from the front stagnation point, and 
underestimates beyond this point compared to the ex- 
perimental data by Sogin and Subramanian [12]. Also 
shown in the same figure is theoretical prediction by 
these authors using Merk's method. The two theoretical 
predictions show sin:filar tendency. The outer flow 
equation used in both predictions was an experimental- 
ly determined one by Sogin and Sabramanian [] 2], and 
denoted by Sogin equation in Fig. 3. The reason why 
tile theoretical prediction of local mass transfer near the 
stagnation point is higher than the experimental data is 
not clear. Probably, a more correct outer flow measure- 
ment will give a clue to this question. 

CONCLUSION 

An exact numerical solution to the two-dimensional 
laminar boundary-layer equations of continuity. 
momentum, heat and mass transfer has been nu- 
merically solved by the method of finite difference. The 
solutions to the thermal energy equation and convec- 
tive mass transfer equation have for the first time been 
solved by this method under forced convection. Exact 
numerical solutions for the stagnation region tempera- 
ture and concentration distributions also provided co l  
rect initial conditions to the boundary-layer calculation. 
Essentially the outer flo,a velucity dlstributiun dictated 
the rate of transport process a(rr the boundao-layer. 

Results obtained in the present work were com- 
parable with experimental data available, and certainly 
made an improvement over past analytical approx- 
imation. This was especially the case for heat transfer. 
Predicted local rate of mass transfer, however was not 
in a good agreement with the experimental data 
available. This may probably, at least in part, due to the 
outer flow equation employed in the present calcula- 
tion. By providing a carefully measured outer flow 
velocity distribution, a better agreement with the ex- 
perimental data is expected. 
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NOMENCLATURE 

a : Constant in stagnation region velocity 
A~ : Coefficients in outer flow equation 
C : Concentration 
C,, : Specific heat at constant pressure 
D : Binary diffusity 
f : Stagnation function defined by eq. (38) 
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F : Normalized velocity defined by eq. (27) 
G : Stagnation function defined by eq. 138) 
L : Characteristic length 
T : Temperature 
u : Streamwise velocity, dimensional 
b ' : Outer flow velocity, dimensional 
v : Normal velocity, dimensional 
V : Normal velocity defined by eq. (28) 
x : Streamwise coordinate, dimensional 
y : Normal coordinate, dimensional 
~' : Stagnation region normal coordinate defined by 

eq. (38) 

Subscripts and Superscripts 
w : Condition at wall 
e : Condition at boundao.-layer edge 
�9 : Dimensionless quantity defined by eqs. (11) and 

(12) 

Dimensionless  Groups 
Re : Reynolds number = LUop//~(Uo ::free-stream 

velocity) 
Sc : Schmidt number = ~/D 
Sh : Sherwood number = bUD (b= mass transfer 

coefficient) 
Pr : Prandtl number = C~,u/k (k=thermal conduc- 

tivity) 

Greek Letters 
a : Thermal diffusity 
7; : Normal coordinate defined by eq. (22) 
,u : Viscosity 

Kinematic viscosity 
Streamwise coordinate defined by eq. (2l) 

,o Density 
r~ Wall shear stress 

Angle measured from the front stagnation point 
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